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Abstract—In this paper, we propose a new dataset and bench-
mark for low altitude UAV object detection, aiming to find and
localize waste plastic bottles in the wild, as well as to inspire the
development of object detection models to be capable of detecting
small and transparent objects. To this end, we collect 25, 407
UAV images of bottles with various kinds of backgrounds. Unlike
traditional horizontal bounding box based annotation methods,
we use the oriented bounding box to accurately and compactly
annotate the bottles, which provides more detailed information
for subsequent robotic grasping. The fully annotated images
contain 34, 791 bottles, each of which is annotated by an
arbitrary (5 d.o.f.) quadrilateral. To build a baseline for bottle
detection, we evaluate several state-of-the-art object detection
algorithms on our UAV-Bottle Dataset (UAV-BD), such as Faster
R-CNN, SSD, YOLOv2 and RRPN. We also present an analysis of
the dataset along with baseline approaches. Both the dataset and
benchmark are made publicly available to the vision community
on our website to advance research in the area of object detection
from UAVs.

Index Terms—Object Detection, Oriented Bounding Box, Deep
Learning, Unmanned Aerial Vehicles

I. INTRODUCTION

Nowadays, with the popularity of tourist attractions, there is
a lot of rubbish, especially plastic bottles, need to be recycled.
However, these bottles are mainly collected by sanitation
workers, which is time-consuming, laborious and dangerous,
as shown in Fig.1. To solve this problem, we propose to use
unmanned aerial vehicles (UAVs) to find and recycle bottles.
We also build a UAV bottle dataset (UAV-BD1) to detect and
locate bottles more effectively. In this paper, we focus on how
to detect bottles in UAV images.

Detecting objects in UAV images plays an important role
in many applications and has received significant attention in
recent years [1]. However, it is still a challenging problem
due to the high resolution with the extremely high level of
details, various shooting platform, limited annotated data, and
limited processing time for real-time applications [2]. In UAV
images, the bottles look completely different from the bottles
in datasets such as PASCAL VOC [3], Microsoft COCO [4],
etc. The difference between PASCAL VOC and our dataset is
shown in Fig.2.

As to UAV images, detecting bottles exists several unique
challenges. First, the size of bottles is very small, which is

1UAV-BD is avaliable at https://jwwangchn.github.io/UAV-BD/
3http://news.hsw.cn/system/2012/05/16/051321760.shtml

Fig. 1. The sanitation workers who are picking up rubbish on the Huashan
Mountain3.

(a) Bottles in PASCAL VOC. (b) Bottles in UAV images.

Fig. 2. Comparison of bottles in PASCAL VOC dataset and UAV images.

generally less than 50 × 50 pixels. Meanwhile, due to the
different altitudes of the UAV system, the size of bottles
differs in scale. Second, in UAV images, the backgrounds
of the bottles are very complex which usually results in
poor detection performance. Third, in contrast to conventional
object detection datasets, where objects are generally oriented
upward [5], the bottles in UAV images often appear with
arbitrary orientations depending on the shooting angle of the
UAV camera, as illustrated in Fig.2(b). Fourth, plastic bottles
are often transparent, thus the background will can be seen
through the bottle, increasing the difficulty of detection. To



(a) Normal annotation method using horizontal bounding box.

(b) Our annotation method using oriented bounding box.

Fig. 3. The differences between horizontal bounding box and oriented
bounding box.

build a baseline for bottle detection in UAV images, we
establish a large scale bottle detection dataset (which we call
UAV-Bottle Dataset (UAV-BD)) and benchmark.

As we know, convolutional neural networks(CNN) has been
applied to solve the object detection problem and the methods
based on CNN have achieved state-of-the-art performance [6].
Most of the existing CNN-based detection methods use the
horizontal bounding boxes to locate objects in images. The
horizontal bounding box is a rotation variant data structure, as
shown in Fig.3(a), but it doesn’t works well when the detector
deals with orientation variations of objects. To overcome this
problem, some efforts are made either adjusting the orientation
or trying to extract rotation insensitive features. Unlike these
methods which try to eliminate the effect of rotation on the
feature level, we prefer to make full use of the rotation
information for feature extraction so that the detection results
involve the angle information. Therefore, the detection results
are rotatable, whereas the performance of the detector is
rotation invariant [6]. As shown in Fig.3, the same bottle has
different horizontal bounding boxes when rotating it, but it has
the same oriented bounding box. Moreover, angle information
of the bottle is very useful when grasping the bottle with the
robotic manipulator.

II. UAV-BOTTLE DATASET

A. Dataset collection

For dataset collection, we follow four key suggestions: (1)
collecting images including bottles a wide range of scale and
aspect ratios; (2) collecting images including bottles different
background scenes; (3) collecting images including bottles
different orientations; (4) collecting as many types of bottles
as possible.

The UAV platform used in this work is DJI Phantom 4 Pro
quadcopter integrated with a 3-axis stabilized gimbal. Images
are collected by a camera mounted on the quadcopter. The
resolution of the captured images are 5472 × 3078 pixels. In
order to collect images covering bottles of a wide range of
scales and aspect ratios, images at different flight altitudes
ranging from 10m to 30m are collected.

Fig. 4. Samples of annotated images in UAV-BD. We show one full image
which size is 5472× 3078 per each scene.

Fig. 5. Sample of annotated images in UAV-BD. We show three images which
sizes are 342× 342 per each scene.

In UAV images, the backgrounds of the bottles are very
complex. To increase the diversity of dataset, we divide the
collected images into eight scenes. Which are illustrated in
Fig.4 and Fig.5. In Fig.4, we show the original images of
eight scenes, each scene contains one original image whose
sizes are 5472×3078 pixels. In Fig.5, we show the segmented
images of eight scenes, each scene contains three subimages
whose sizes are 342×342 pixels. Eight background scenes are
chosen and annotated in our UAV-BD, including Bush forest
land, Waste land, Step, Mixture, Flat ground, Plastic stadium,
Sand land and Grassland.

B. Annotation method

We build the UAV-BD for the bottle detection problem by
collecting bottle images using UAV. In the field of computer
vision, many visual concepts such as region descriptions,
objects, attributes, and relationships, are annotated with hor-
izontal bounding boxes, as show in [5], [7]. A common
description of horizontal bounding boxes is (cx, cy, h, w) or
(xmin, ymin, xmax, ymax), where (cx, cy) is the center loca-
tion of horizontal bounding box, h,w are the height and width
and (xmin, ymin) is the top left location, (xmax, ymax) is the
bottom right location [5].

Objects with less orientations can be adequately annotated
with this method. However, horizontal bounding box cannot
accurately or compactly outline oriented instances such as the
bottles in UAV images. In UAV images, the overlap between
two bounding boxes is sometimes very large that some state-
of-the-art object detection methods cannot diffetentiate them
[5]. At the same time, horizontal bounding box may contain
lots of background pixels while annotating the object, espe-
cially when objects with large aspect ratios.



TABLE I
IMAGES AND INSTANCES NUMBER IN UAV-BD.

Scenes n1 n2 n3 n4

Bush forest land 230 4134 1812 3047
Waste land 379 7598 4355 5800

Step 135 2691 1325 2106
Forest land 285 5724 3702 4891
Flat land 134 2803 1538 2142

Plastic stadium 336 6807 4180 4998
Sand land 249 5570 2704 4008
Grassland 456 9029 5778 7787

Total 2204 44356 25394 34779

An alternative for annotating oriented objects is using
the method of arbitrary quadrilatral bounding boxes. This
annotation method can be expressed as (xi, yi), i = 1, 2, 3, 4,
where (xi, yi) denotes the position of the oriented bounding
boxes’ vertices in the image [5]. The vertices are arranged
in a clockwise order. But as bottles are rigid with almost
no deformation, therefore we choose a method called θ-
based oriented bounding box, as shown in Fig.3(b). This
method is often used in text detection benchmarks, expressed
as (cx, cy, h, w, θ) where θ is the angle from the horizontal
direction of the horizontal bounding box [5]. The tool for
annotating is roLabelImg4.

C. Dataset Statistics

UAV images are usually very large in size compared to con-
ventional image datasets. The size of original image in UAV-
BD is 5472× 3078 pixels, while most images in conventional
datasets (e.g. PASCAL VOC and Microsoft COCO) are no
more than 1000 × 1000 pixels [8]. To avoid segmenting the
single instances (bottles) into different subimages, we firstly
annotate on the original images without segmentation. But we
find the original image is too large to be trained for CNN-
based algorithms. So we segment each original image into
144 small subimages, and the size of subimages is 342× 342
pixels. Note that we abandon the instances at the border. Then
we use these subimages to train CNN-based detection model.

The detailed statistics of the UAV-BD is shown in the
TableI, where n1, n2, n3, n4 are the number of original
images, subimages, instances in original images, instances in
subimages for each scene, respectively. The UAV-BD contains
about 34, 791 object instances in 25, 407 images. The “Grass-
land” scene has the largest number of object instances: 7, 795
instances in 5, 785 images. The “Step” scene has the smallest
number of instances: 2106 instances in 1, 325 images.

As bottles usually have rigid body, thus we can get some
prior information to train the detection model. For example,
we can use the distribution of angle, size and ratio as prior
information to improve the performance of detection model.
For UVA-BD, we plot the distribution of angle, size and ratio
respectively, which are illustrated in Fig.6. From Fig.6(a), we

4https://github.com/cgvict/roLabelImg.git
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Fig. 6. The angle, size and ratio distribution of UAV-BD.

can see that bottles’ angles in the dataset are almost uniform.
And most of bottles’ sizes are range from 500 pixels to 3000
pixels while the ratios of bottles are mostly range from 1.0
to 4.0, which are shown in Fig.6(b) and Fig.6(c). Note that
we could use these statistics data to design object-specific
detection models.

III. BASELINES AND METHODS

The data for all experiments comes from UAV-BD. In order
to ensure that the distributions of training and testing data
approximately match, we randomly select 64% of the UAV-
BD as the training data, 16% as validation data, and 20% as the
testing data. The whole UAV-BD contains 16258 images with
22211 instances for training, 5081 images with 6944 instances
for testing and 4055 images with 5624 instances for validation.
All the original images and segmented images with ground
truth for UAV-BD have already released5.

Here, we compare four kinds of approaches which differ in
the use of detection framework and data annotating method.
For horizontal object detection, we select Faster R-CNN6

[9], SSD7 [10] and YOLOv28 [11] as our baseline testing
algorithms for their excellent performance on general object
detection. For oriented object detection, we modify the original
Rotation Region Proposal Networks(RRPN9) algorithm [12]
to predict properly oriented bounding boxes. RRPN’s network
structure is shown in Fig.7. This annotation can be denoted
as {cx, cy, h, w, θ}, where (cx, cy) is the central coordinate of
the oriented bounding box, h, w and θ is the height, width
and rotation angle of the oriented bounding box respectively.

5https://jwwangchn.github.io/UAV-BD/
6https://github.com/rbgirshick/py-faster-rcnn.git
7https://github.com/weiliu89/caffe.git
8https://pjreddie.com/darknet/yolo/
9https://github.com/mjq11302010044/RRPN.git
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Fig. 7. RRPN’s network structure.
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Fig. 8. Numerical results (AP) of baseline models evaluated with HBB ground
truths.

A. Baselines with Horizontal Bounding Boxes

Ground truths for horizontal bounding boxes(HBB) experi-
ments are generated by calculating the axis-aligned bounding
boxes over original bounding boxes. To make it fair, we keep
all the experiments’ setting and hyper-parameters the same as
depicted in corresponding papers [9]–[11].

The experimental results of HBB prediction are shown in
Fig.8. The blue one illustrates the result for Faster R-CNN,
the orange one illustrates the result for SSD and the green
one illustrates the result for YOLOv2.

B. Baseline with Oriented Bounding Boxes

Prediction of oriented bounding boxes(OBB) is difficult,
because the present state-of-the-art detection methods are not
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Fig. 9. Anchor strategy in our framework of RRPN.

designed for oriented objects. Therefore, we choose Rotation
Region Proposal Networks(RRPN) [12] as the framework for
its accuracy and efficiency. Then we modify it to adapt UAV-
BD with its prior information mentioned in section II-C.

RRPN is based on Faster R-CNN. For Faster R-CNN, the
Region of Interests (RoIs) are generated by Region Proposal
Network(RPN), and the RoIs are rectangle which can be
written as R = (xmin, ymin, xmax, ymax) = (cx, cy, h, w).
These RoIs have regressed from k anchors which are generated
by some predefined scales and aspect ratios. But in RRPN,
it uses R-anchors to create rotation anchors and uses RRoI
pooling to replace RoI pooling which used in Faster RCNN,
except for predefined scales and aspect ratios, it also uses
angles to generate RoIs. That is the reason why RRPN
can predict oriented bounding boxes which can be written
as R = (cx, cy, h, w, θ). In the section II-C, we analyze
the size, aspect ratio and angle distributions of UAV-BD,
so we can select reasonable scale, aspect ratio and angle
values to generate new anchors which are shown in Fig.9.
The experimental results of RRPN, SSD, Faster R-CNN and
YOLOv2 based on OBB ground truth are shown in Fig.10.
The red one shows the result of RRPN.
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Fig. 10. Numerical results (AP) of baseline models evaluated with OBB
ground truths.

C. Experimental Analysis

We use precision-recall curves(PRCs) and average preci-
sion(AP) values to compare three kinds of baseline models
(Faster R-CNN, SSD and YOLOv2), which are evaluated with
HBB ground truth. For evaluation metrics, we use the same AP
calculation as for PASCAL VOC. As shown in Fig.8, the AP
values of Faster R-CNN, SSD, YOLOv2 are 90.3%, 90.1%,
77.4%, respectively.

Then we still use the same evaluation indicators to compare
four kinds of baseline models (SSD, RRPN, Faster R-CNN
and YOLOv2). The difference is that we set θ = 0 of Faster
R-CNN, SSD, YOLOv2’s results and evaluated these models
with OBB ground truth. As shown in Fig.10, the AP values of
RRPN, SSD, Faster R-CNN and YOLOv2 are 88.6%, 87.6%,
86.4%, 67.3%, respectively. We can observe when using OBB
ground truth, the performances of the three baseline methods
decrease compared with that using HBB ground truth, thus
because of when we set θ = 0, the localization error will
increase with OBB ground truth. We can clearly see that the
result of RRPN is the best.

In Fig.11, we show the results of different object detection
experiments with HBB and OBB ground truth. For oriented
bottles shown in Fig.11, the location precision of bottles in
HBB are much lower than that of OBB. We can find that OBB
regression is the correct way for oriented object detection.
Which makes it possible for oriented bottle detection to be
efficiently integrated in bottle grasping. In addition, the results
of RRPN show the highest localization accuracy and the the
lowest false-alarm and false positive.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have built a large-scale dataset for bottle
detection in UAV images, i.e., UAV-BD. In contrast to general
object detection benchmarks, we annotate a huge number
of well-distributed bottles with oriented bounding boxes. We

Fig. 11. Visualization results of testing on UAV-BD using well-trained Faster
R-CNN, SSD and RRPN. Top to Bottom respectively illustrate the results
for Faster R-CNN, SSD, YOLOv2 and RRPN.

believe this dataset is challenging and very useful for real
vision based bottle recycling. Based on this dataset, we also
establish a benchmark for bottle detection and show the
feasibility to produce oriented bounding boxes which provide
more useful information for bottle grasping.

In future work, we will focus on locating and recycling
bottles in the real-world using UAV.
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